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Abstract

Two algorithms for mapping snow cover with two Earth Observing System (EOS) instruments,

the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Advanced Spaceborne

Thermal Emission and Reflection Radiometer (ASTER), are compared. The algorithms are

being developed with Landsat Thematic Mapper (TM) data. Both algorithms are demonstrated

capable of accurately mapping snow cover in the absence of clouds. Application of the MODIS and

ASTER algorithms and data products for snow will be made at difTerent spatial and temporal

scales, dictated by sensor design and operation. The ASTER algorithm provides a great amount

of high resolution (30 m) information about features in a scene not obtainable with the MODIS

algorithm and will find greatest use at site and small basin scales. The MODIS algorithm

provides information on snow cover at moderate spatial

coverage so will be of greatest use at basin, continental

cover.

resolution (500 m) with near daily spatial

and global scales for monitoring snow

Introduction

The Earth Observing System (EOS) is the principal component of NASA’s Mission to Planet

Earth (MTPE). EOS is a comprehensive global observing system of satellites and a Data and

Information System (EOSDIS) designed to collect, process and distribute data for the study of

natural processes on earth. Two algorithms for mapping snow cover with two EOS instruments,

the Moderati Resolution Imaging Spectroradiometer (MODIS) and the Advanced Spaceborne

Thermal Emission and Reflection Radiometer (ASTER), are compared in this paper. These
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instruments have differing capabilities and operational modes that result in unique data products

designed for different communities. The algorithms are developed for diflerent purposes and

differ in approach to the task of identifying or classifying snow. Application of the MODIS and

ASTER algorithms and data products for snow will be made at different spatial and temporal

scales, dictated by sensor design and operation. The ASTER algorithm provides a great amount

of high resolution (3o m) information about features in a scene not obtainable with the MODIS

algorithm and will find greatest use at basin scales. The MODIS algorithm provides information

on snow cover at moderati spatial resolution (5OO m) with near daily spatial coverage so will be of

greatest use at continental and global scales for monitoring snow cover. Described here is a

comparative look at the snow-mapping capabilities of the MODIS and ASTER derived algorithms.

Instrument Descriptions

Instrument descriptions, as well as much other information, can he found in the 1995
I

MTPE/EOS Reference Handbook which is available from the EOS Project Science Of%ce ho~e

page located at; http3/spso2.gsfc. nasa.gov/spso_homepage. html.

MODIS

The MODIS instrument employs a conventional imaging radiometer concept, consisting of a

cross-track scan mirror and collecting optics, and a set of linear detector arrays with spectral

interference filters located in four foca~ planes. The optical arrangement will provide imagery in

36 discrete bands between 0.4 and 14.5 pm selected for diagnostic significance in Earth science.

The spectral bands will have spatial resolutions of 250 m, 500 m, or 1 km at nadir. MODIS

instruments will provide daylight reflection and day/night emission spectral imaging of any

point on the Earth at least eveqy 2 days, operating continuously.

ASTER
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ASTER will operati in three visible and near-infrared (VNIR) channels between 0.5 and 0.9

pm, with 15-m resolution; six short-wave infrared (SWIR) channels between 1.6 and 2.43 pm, with

30-m resolution; and five thermal infhred (TIR) channels between 8 and 12 ~m, with 90-m

resolution. The instrument will acquire data over a 60-km swath whose center is pointable cross-

track ~8.55° in the SWIR and TIR, with the VNIR pointable out to H4”. An additional VNIR

telescope (aft pointing) covers the wavelength range of Channel 3. ASTERS pointing capabilities

will be such that any point on the globe will be accessible at least once every 16 days in all 14 bands

and once every 5 days in the three VNIR channels.

Algorithm Methods

Both algorithms are being developed using Landsat Thematic Mapper (TM) data as a surrogate

for respective instrument data. In this comparison both algorithms begin with the same input data

but follow their separate processing flows and decision paths to arrive at separati results that are

dissimilar yet common in one respect; both map snow cover.

MODIS

The technique used in the MODIS snow mapping algorithm, SNOMAP, is to identi& snow by its

reflectance characteristics in the visible and near-inf+ared wavelengths. A key feature of snow is

its high reflectance in the visible wavelengths and low reflectance in the near-infrared at about

1.6 Lm. That difference in reflectance can be detected by use of a ratio between separate sensor

bands covering the visible and 1.6pxn regions . Snow may often be confused with clouds in the

visible wavelengths because both are strong reflectors but, may be discriminated in the NIR at

about 1.6pm where clouds are good reflectors and snow a poor reflector (Bunting and d’Entremont,

1982). Cirrus clouds are an exception to the general rule leading to frequent confusion with snow.

A normalized difference snow index (NDSI) that gives a relative measure of change in
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reflectance of snow from the Visible to the NIR is used to identifi snow and discriminate snow

from many clouds. The NDSI for TM is

NDSI = (band 2- band 5) / (band 2 + band 5)

Snow is identified by criteria tests for key reflectance features. The NDSI and a threshold test

for red reflectance are the criteria tests used to identifj snow. These criteria tests are combined in

a decision rule to identifi a pixel as snow covered or not snow covered (Kyle et al., 1978; Bunting

and d’Entremont, 1982; Dozier, 1984). The snow decision rule is; if a pixel has an NDSI greater

than 40 and red reflective greater than 11% it is identified as snow This has been an effective

snow rule over a wide range of TM scenes producing snow cover maps that generally agree with

visual interpretation of snow cover. Confusion of snow and cirrus clouds has appeared to be the

most frequent error encountered. Confusion with bright surfaces, for example, glacial sediment-

laden rivers has also been encountered.

SNOMAP first converts instrument data, the DNs, to radiance using either gains and offsets

recorded at time of acquisition or using the pre-flight calibration conversion method depending

on TM processing date (EOSAT, 1996; Hall et al., 1995; Markham and Barker, 1986). Reflectance

in each band, Rb, is then calculated and used in the snow decision process. Conversion to

reflectance in each band is done as;

Rb = (n* Lb* d2) / (~~ * COS(SZA))

Lb = radiance for band b

d = Earth sun distance AU (often assumed b be 1.0)

~b = solar exoatmospheric irradiance constant for band b

SZA = solar zenith angle (0)

Comparisons of SNOMAP runs employing TM DNs or reflectance have demonstrated that

reflectance produce results that are in greater agreement with observed snow cover in a scene as
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compared to results produced with DNs (Hall et.al,. 1995), This has ofkmbeen a subtlebut

iiijiilikfi!iitiiiliili!hkkkiiiimidl.i.
The NDSI is then calculated and the criteria tests decision rule is applied to determine which

pixels are snow covered. Pixels are labeled as snow, or not snow. SummaW statistics of the run

and result are generated as part of the algorithm. These summary statistics are termed metadata

in EOS terminology. Metadata includes the area (km2) of snow, percent of scene that is snow

covered, out of range data counts, etc. Metadata are generated t.a provide summary statistics and

provide an overview of results to assist with analysis, or selection of data products.

SNOMAP can be run on any TM scene without any preliminary preprocessing of the data

because the thresholds are static, and reflectance, a quantitative measure, is calculated and used

for snow identification in any and all scenes. Depending on the format of the TM data tapes,

which have varied during the Landsat program, stripping of header information from data files

may be required so that only instrument data are ingested. The solar zenith angle for a TM scene

is obtained from a header file. End to end processing time is approximately five minutes for a TM

quarter scene, using non-optimized code.

ASTER Polar Cloud Mask

The methodology implemented in the ASTER Polar Cloud Mask algorithm is a

two stage process. The intent is to link together a fast, but less accurate method with a more

accurate, but compute intensive technique inta one methodology that is still accurate but fast

enough for application in an operational system. ‘ Some class members are classified at a high

level of confidence using a small set of spectral features using simple decision surfaces, while

others require larger feature sets using a more complex classification technique. Although

development of a nighttime version of the algorithm is underway, the current algorithm is only

designed as a daytime algorithm (i.e., solar zenith angles less than 850). Although the primary

motivation for this algorithm development is the masking of clouds in polar imagery, a byproduct

of the technique results in each pixel being classified into one of the following ten classes: water,

5



wet ice or slush, icaknow, thin cloud over ice/snow, thin cloud over water, thin cloud over land,

thick cloud, land, shadow on icelsnow, and shadow on land. It is estimated that, on the average,

the algorithm is 90% accurate in distinguishing cloud from non-cloud classes but is in some cases,

significantly less accurate in distinguishing between within cloud classes and within non-cloud

classes. For ex~ple, it is difficult to separate wet, marshy, or boggy land from cloud shadow on

land at a high level of accuracy (greater than 90%). Likewise, within cloud classes are confused.

For example, thin cloud over snow/ice is frequently confused with thick or multilayer cloud. For

this algorithm, polar regions are defined as those lying poleward of 60° N or 60° S. To date the

algorithm has been tested on 24 Landsat TM quad scenes over coastal Antarctica and another 58

quad scenes distributed throughout the Northern Hemispheric polar regions.

As in the SNOMAP algorithm, the success of this algorithm is heavily dependent on the

availability of both visible wavelength channels (e.g., Band 2, 3, and 4 in Landsat TM) and short

wave IR channels (e.g., Band 5 and 7). Preprocessing of the Landsat TM data from DN to

radiance and then to reflectance is performed using the same technique as in the SNOMAP

algorithm.

In the first stage, feature vectors close to class cluster centers are conservatively classified,

with small computational expense, through the use of multispectral thresholding. The

classification output is ambiguous among two to five classes from this stage and relies on the

second stage to correctly resolve the ambiguity. The purpose of this stage is to classifi as many
.’

pixels and reduce the classification ambiguity as much as possible while minimizing

classification mistakes. The results from this stage are then forwarded to the second stage. The

results provided by the first stage are not perfect, but the goal is to misclassi& for cloudho-cloud at

less than 3% and reduce the ambiguity between cloud and no-cloud for at least 75% of the pixels on

the average. Five features are utilized in this stage. They are Band 4, Band 5, Band 6,

arctan(Band 4, Band 5) (hereinafter called Feat 1), and Band 2 * COS(10”) - Band 4 * sin( 10°)

(hereinafter called Feat 2). The classification

sequence often tests using these five features.
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derivative features, but also because they are applied adaptively. The thresholds for these two

features are derived from the scene being c1assif3ed using feature histograms. Significant

spectral variability is apparent for each class from scene to scene. Some of the variability is due to.

the natural variations in the atmospheric path (especially water vapor) and some is due to the

natural variability intrinsic to a specific class. For example, within the land class, the spectral

characteristics of boreal forest are not the same as wetlands or bogs and are not the same as the

bare rock found in mountain ranges. Likewise, the spectral characteristics of fresh snow are

different from those of ice floes, or shadowed, wet or thin ice. Feat 1 is especially important in

separating all types of frozen water surfaces from cloud over those sufiaces. This feature is key to

this algorithm for the same reason that the h“DSI metric is key to the SNOMAP algorithm. The

distribution of all types of frozen water are distributed narrowly in the Feat 1 space while cloud is

distributed much more broadly and uniforndy. The same idea follows for Feat 2; however, in this

case the adaptive thresholding is important for distinguishing land surfaces from cloud over land

surfaces. Thi is similar to the technique used by Li and Leightxm (1992) in the classificati~n of

land in AVHRR image~ using bands 1 and 2.

The pixels that are not classified or are partially classified are passed onto the second stage

which is a more computationally expensive process. It is a relatively new technique that is called

the paired histogram method (Berendes et al., 1996). Additional derivative features are also

calculated (140 total) and include ratios, differences, arctangents, Euclidean distances, and

normalized differences of band pairs. Three band combinations of Euclidean distance and Hue-

Saturation-Intensity are also computed. The paired histogram method can be characterized as an

ensemble averaging or balloting scheme. Numerous tests are performed between pairs of classes

and the results horn each test constitutes a ballot or vote for one or none of the two classes being

compared. After all the tests are performed, the ballots are tallied and the classifier labels the class

of the feature vector as the one with the most votes. The tests are derived from a preprocessing or

training step using labeled feature vectors. Approximately 3700 labeled feature vect.ms (or

samples) have been extracted to date. The basis for the tests is a pairwise comparison between
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every combination of possible classes. For example, in this algorithm there are 10 classes, so a

total of 45 comparisons is possible for a given feature. Since it is impractical to make 45 class

comparisons for each of 140 features, during the training process the three best features for each

pairwise comparison are determined. The classifier only applies three features in each pairwise

comparison for total of 45 * 3 = 135 tests for each pixel, maximum. If the first stage filters out any of

the classes for consideration then the paired histogram method only considers comparisons for the

unfiltered or possible classes. In that case less than 135 tests would be conducted.

Key to the performance of the paired histogram algorithm is the determination of the three best

features ta be used in each pairwise comparison of classes. The three best features are those that

provide for the maximum separation between a given set of two classes. This determination is

accomplished through the use of two metrics - overlap and divergence. Overlap is the primary

measure and is derived from the feature histograms of labeled samples. It is computed as the sum

of the products of all histogram values that overlap in the feature space. The secondary measure,

divergence, is c~mputed as the ratio of the difference in the means between the two classes and the

sum of the standard deviations for the two classes for a given feature. This measure is only used if

there is a tie or equal value in overlap between two classes. After all of the features for a given

I

class combination are ranked according to overlap and, if neceksa~, divergence, an additional ‘

re-ranking process is performed. The cross correlation between the highest ranked features for a

specific class is computed and if the value is greater than 0.8 the lower ranked value is dropped

and the next highest ranked value is tested for cross correlation. The re~ranking is terminated

when all 3 cross correlation values for the 3 highest ranked features (1-2, 1-3, and 2-3) are less than

0.8.

Once the three best features for each paired combination of classes is determined, a set of lookup

tables is created. Three lookup tables are created for each class pair (one for each of the three best

features). As stated above there area maximum of 45 class pairs which results in a total of 45 * 3 =

135 lookup tables. A lookup table for a given

histogram for each class in a class pair for a
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discretized into 256 bins and scaled to the minimum and maximum values of the feature for both

classes. Then a bin by bin comparison is made between the two histograms. A table lookup value

of 1 is assigned to that class that has the highest histogram value. A table lookup value of zero is

assigned t.a the lesser value. In the case of a tie or equal histogram values, both classes are

assigned a table lookup value of zero. The creation of the lookup tables completes the training or

preprocessing step and forms the basis for the aforementioned balloting based classification

scheme.

To apply the classifier to a pixel, the following steps are performed: 1) Calculate all of the three

best features for each possible class, 2) Initialize a counter for each of the possible classes, 3)

Perform all appropriate tests by accessing the table lookup values described above. For example,

scale and bin the appropriate feature value according to the minimundmaximum value for the

class pair under consideration. Lookup the ballot (O or 1) for each class in this bin and increment

the appropriate class counter if the ballot is one. 4) After performing all tests, classify the pixel as

. the class whose counter value is largest.

The processing time for a TM quarter scene is approximately 20 minutes on a SGI Indigo2

workstation. Classifier training takes significantly longer but only is required one time. As

more scenes are acquired and, subsequently, more samples are extracted, the classifier will be

retrained periodically to test for any changes in the distributional characteristics of the ten classes

in each feature space.

Scenes of Comparison

Two Landsat TM scenes were used in this comparison. One

(quadrant 1) of the Wrangell Mountains, AK acquired on 9 July

was a Landsat 4 TM quarter scene

1988 ( solar zenith ~gle of 43°)

containing snow covered mountains, glaciers, vegetated surfaces and clouds over all surface

features. The other was a Landsat 5 TM full scene containing similar surface features around

Glacier National Park, MT, acquired on 6 March 1994 (solar zenith angle of 600).
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Snow and Other Features

Both algorithms produce results that are similar and dissimilar. The SNOMAP algorithm

generates a snow and not snow map and summary statistics (metadata) of snow cover. The

ASTER algorithm generates a ten-class classification map. A great difference in information

content exists between the algorithms because of the many features that the ASTER Polar Cloud

Mask algorithm classifies. To make a direct comparison of only the snow coverage between the

algorithms, the ASTER Polar Cloud Mask classes of slush, snow/ice, and shadow on iceJsnow

were combined to make an ASTER Polar Cloud Mask snow class comparable to the snow of

SNOMAP.

Gray level images of results lacked most of the information content of the color images of

results so have been omitted from paper. Copies of color illustrations of results may be requested

from the authors.

Comparison of algorithms with the Wrangell Mountains scene indicates that both algorithms

accurately identi~ snow covered areas . Also apparent is the misidentification of some clouds in

the upper quarter of the scene as snow by SNOMAP . The ASTER Polar Cloud Mask algorithm

identifies those same clouds as thin cloud over ice/snow. Those clouds are interpreted as

multilevel clouds, apparently high thin clouds over lower thick clouds. Both algorithms confuse

those overlying thin clouds with the underlying feature. SNOMAP identifies them as snow ;

ASTER Polar Cloud Mask classifies them as thin cloud over ice/snow , despite the interpretation

that they are over clouds through which the surface is not directly observable. The ASTER class

interpretation is ambiguous in this situation in that it can be interpreted as correct in identi$ing

thin cloud but, incorrect in that the underlying surface is cloud not ice or snow.

SNOMAP identified 21% (1,554 km2) of the scene as snow covered. The ASTER Polar Cloud

Mask snow area was 13% (1,006 km2). The majority of the diiTerence in snow extent between the

algorithms is accounted for by the misidentification of thin clouds as snow by SNOMAP. Those

thin clouds are identified as thin clouds over ice/snow in the ASTER

that was not combined into the ASTER Polar Cloud Mask snow class.
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by SNOMAP and the ASTER Polar Cloud Mask thin clouds over ice.know class can be applied as a

correction to this SNOMAP error, 1,554-625 = 929 (Numbers from Tables 1, 2, and 3). That

diiTerence then is the corrected snow area for SNOMAP. The SNOMAP corrected snow area and

ASTER snow class are then only different by about 77 km2, relatively good agreement

considering the great difference in algorithm techniques and information content.

Similar results were obtained in comparing the algorithms on the TM scene of Glacier

National Park. In that scene SNOMAP identified snow underlying thin clouds that the ASTER

Polar Cloud Mask algorithm identified as thin cloud over ice/snow. When that difl’erence in

classification was accounted for both algorithms identified very similar areas of snow cover.

EOS Era Plans

MODIS

Launch of the first EOS platform, AM-1, is scheduled for June 1998. After AM-1 is declared

operational, routine generation of ‘products using the algorithms described here for the MODIS and

ASTER instruments should commence. During the snow season, daily MODIS snow products are

planned to provide information on global snow cover from the onset of snow in the autumn through

its melt in the spring. The MODIS data productts will provide data in the form of a ‘map’ of snow

cover at 500 m spatial resolution, and metadata, summary information about snow cover and the

data product (Riggs et al., 1996). Also planned are ten day composites of snow cover that contain

information on the duration of snow cover. Options for compositing periods of difTering lengths

are being discussed.

ASTER

The ASTER Polar Cloud Mask will be generated (for 10 classes) upon request, for scenes

obtained poleward of 60° N and 60° S, for solar zenith angles less than 85°, at a spatial resolution of
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30 m, from this algorithm. A cloud mask will be generated for the nighttime scenes also but the

algorithm for this product is still under development. The metadata for this product will include

fractional presence of each class, in addition to cloud fraciton to aid a prospective user in the

selection of clear or cloudy scenes or gerions with in a scene. Since ASTER is a high spatial

resolution instrument, it’s strength in applicaitonis will be for basin scale studies, 3D effects on

cloud poperty retrievals, and validation of measurements fkom lowerespatial resolution sensors.

Summation

Comparisons done indicate that both algorithms are capable of accurately identi&ing snow

cover at a gross level of snow or not snow classification. Thin clouds pose a problem to snow

identification in both algorithms. Thin clouds may be misidentified as snow in SNOMAP, thus

indicating an area of development to pursue in SNOMAP. Ambiguities of classi&ing thin clouds

overlying some features is a focus of ASTER Cloud Mask algorithm development. The ASTER

Polar Cloud Mask algorithm provides a great amount of high resolution (30 m) information about

features in a scene. Its greatest use will be for support of site studies and in small to moderate sized

, basins where detailed classification information is needed. The MODIS snow algorithm

provides information on snow cover at moderate spatial resolution (500 m) with near daily spatial

coverage so will be of greatest use at basin, continental and global scales for monitoring temporal

and spatial changes extent of snow cover.
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Table 1. ASTER classification results for 9 July 1988
Class Area (km2)
Water 9
Slush 208
Snow/Ice 754
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Thin cloud over icehnow
Thin cloud over water
Thin cloud over land
Thick cloud
Land
Shadow on icelsnow
Shadow on land
Total area
Snow
(combined water, slush and shadow on
ice/snow)

1B5
135

23

44
502
7483
1006

Table 2 SNOMAP results for 9 July 1988
Class Area (km2)

Snow
Not snow

Table 3 Classification comaprison of SNOMAP and ASTER for 9 July 1988
Comparison Area (kmZ)

SNOMAP = snow and ASTER = snow 827

SNOMAP = snow and ASTER= not snow 729

SNOMAP = not snow and ASTER= snow 179

SNOMAP = not snow and ASTER= not snow 5730

SNOMAP = snow and ASTER= thin cloud over 825
icelsnow

14


